If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7d^2+20d=0
a = 7; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·7·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*7}=\frac{-40}{14} =-2+6/7 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*7}=\frac{0}{14} =0 $
| 11x^2+28x=0 | | 2-x/8=9 | | 22^x+7=2^15 | | 22x+7=21522x+7=2^15 | | 7+12+2(2t-1)=2(2t+1) | | 5z^2-8z+3=0 | | 1/5(4x-1)=2/3+3/5 | | s−9=29 | | 44s^2-7s-1=0 | | 41f^2+16f=0 | | 3z^2+19z+6=0 | | 124=2r | | (10x-11)(3x-2)(3x-1)=180 | | 7/m=63/6 | | -12x+24=−36 | | 5z+3=27 | | 9-(2-5h)=3h | | 5x+1-2x=-8 | | -2(5t-3)+3t=2t-7 | | 5(x+5)=30(2x–10) | | −12x+24=−36 | | d−44=49 | | 39=b−194 | | 12-4h-2(h-1)=4(h-4) | | –22h=572 | | 16h=416 | | 3+18x=-14+x | | 3x+-4=-2x+6 | | 5(-3x2)(x-3)=-4(4x+5)=13 | | 3+18x=-14+x | | t+48=87 | | H=-5t^2+30t+13 |